skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hindy, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we propose a novel method for assessing students’ behavioral engagement by representing student’s actions and their frequencies over an arbitrary time interval as a histogram of actions. This histogram and the student’s gaze are utilized as input to a classifier that determines whether the student is engaged or not. For action recognition, we use students’ skeletons to model their postures and upper body movements. To learn the dynamics of a student’s upper body, a 3D-CNN model is developed. The trained 3D-CNN model recognizes actions within every 2-minute video segment then these actions are used to build the histogram of actions. To evaluate the proposed framework, we build a dataset consisting of 1414 video segments annotated with 13 actions and 963 2-minute video segments annotated with two engagement levels. Experimental results indicate that student actions can be recognized with top-1 accuracy 86.32% and the proposed framework can capture the average engagement of the class with a 90% F1-score. 
    more » « less
    Free, publicly-accessible full text available November 13, 2025